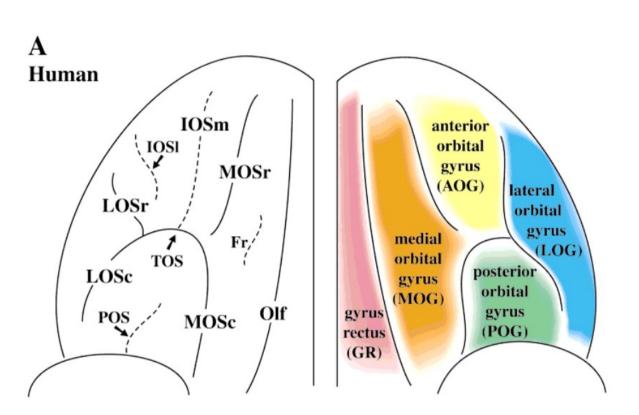
ORBITOFRONTAL SULCAL PATTERNS IN CATATONIA


Mylène Moyal^{1,2}, Alexandre Haroche¹, David Attali^{1,3}, Ghita Dadi¹, Matthieu Raoelison⁴, Alice Le Berre^{1,2,5}, Anton Iftimovici^{1,6,7}, Boris Chaumette^{1,6,8}, Sylvain Leroy¹, Sylvain Charron^{1,2}, Clément Debacker^{1,2}, Catherine Oppenheim^{1,2,5}, Arnaud Cachia^{4,2,*} & Marion Plaze^{1,2,*}

¹GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France. ²Université Paris, France. ³Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France. ⁴Université Paris Cité, Laboratory for the Psychology of Child Development and Education, CNRS UMR 8240, Sorbonne F-75005 Paris, France. ⁶Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, [Pathophysiology of psychiatric disorders], 75014 Paris, France. ⁸ NeuroSpin, Atomic Energy Commission, Gif sur Yvette, France. ⁸ Department of Psychiatry, McGill University, Montreal, Canada. *Equal contribution

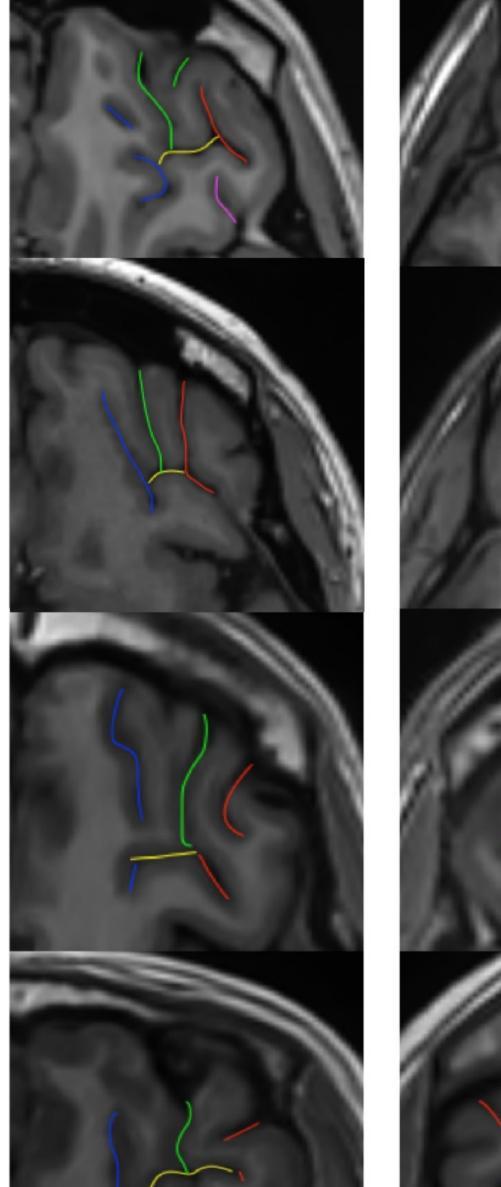
European Psychiatry. 2023

1) INTRODUCTION

- Catatonia is a psychomotor syndrome frequently observed in disorders with neurodevelopmental impairments.
- The orbitofrontal cortex (OFC) has been repeatedly associated with catatonia.
- OFC has an important inter-individual morphological variability, with three distinct H-shaped sulcal patterns: type I, II, III, based on the **continuity of the medial and** lateral orbital sulci.

Types II and III have been identified as neurodevelopmental risk factors for schizophrenia.

Type I

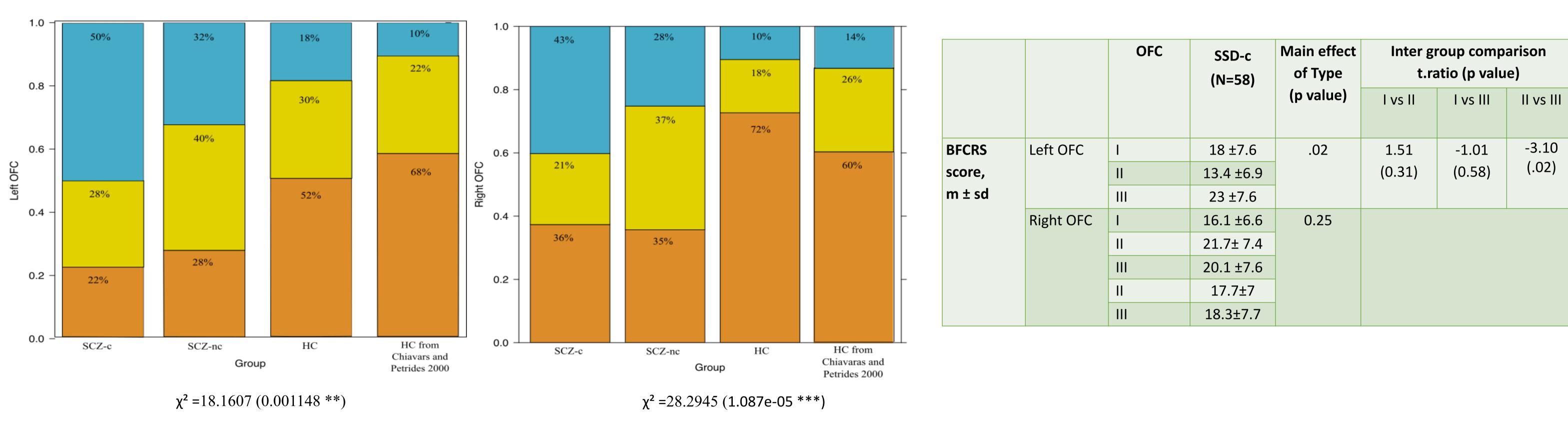

Type II

Type III

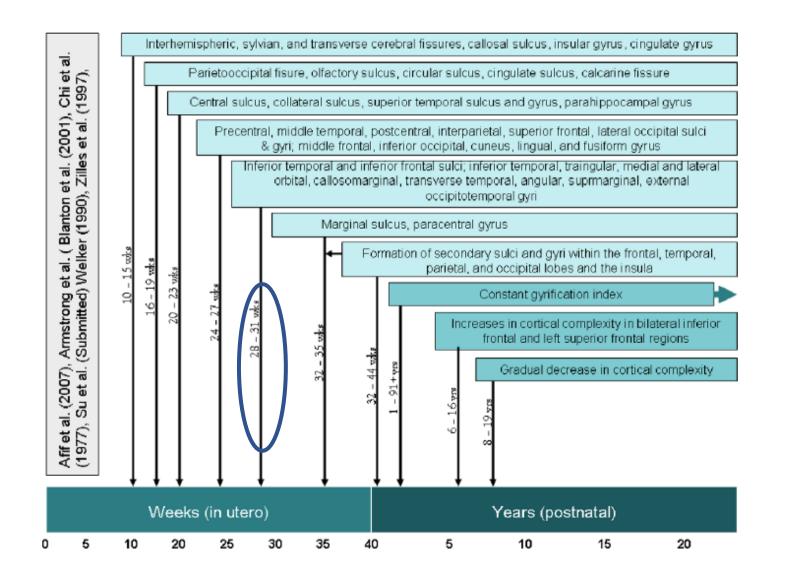
Type IV

2) <u>METHODS</u>

	SCZ-c (N=58)	SCZ-nc (N=65)	HC (N=82)	SCZ-c vs SCZ-nc (p value)*
Men:Women	40:18	44:21	39:43	1
Sex ratio (Men / Women)	2.2	2.1	0.91	1
Age, m ± sd years	36 ± 17	37 ± 13	29 ± 8	0.4
Schizophrenia, N (%)	48 (83)	53 (82)	-	1
Schizoaffective disorder, N (%)	10 (17)	12 (18)	-	1
Age at onset, m ± sd years	25.1 ±9.8	28.3 ±10.3	-	.07
Average length of hospitalization, m ± sd days	76.3 ±61	54.2 ±51.2	-	.02
ECT, N (%)	30 (52)	6 (9)	-	<.0001
ECT, m ± sd session numbers	12.5 ±7.4	13 ±7,7	-	0.99
Assessment of DSM-5 criteria for catatonia	58 (100)	65 (100)		


BFCRS evaluation, N (%)	27 (47)	-	-	-
BFCRS score, m ± sd days	17 ± 7	-	-	-
1,5T GE / 3T GE / 3T CANON, N (%)	50 (86) / 8 (14) / 0 (0)	54 (83) / 11 (17) / 0 (0)	0 (0) / 20 (24) / 62 (76)	0.96

Manual classification with 2 raters using 3D slicer



3) RESULTS

4) **DISCUSSION**

Catatonia patients have less type I and more type III than healthy subjects and more type III than schizophrenia patients without catatonia.

- First study to provide evidence of abnormal OFC sulcal patterns in schizophrenia patients with catatonia, with more type III than in healthy subjects and in schizophrenia patients without catatonia, supporting a neurodevelopmental component of catatonia, at least in schizophrenia patients.
- Catatonia neurodevelopmental component is increasingly recognized and needs to be further investigate notably in non-psychosis catatonia patients.
- Such investigations aim to enhance patient characterization and delve deeper into the underlying pathophysiological \bullet mechanisms of catatonia.

Chiavaras, Mary M., and Michael Petrides. 2000. 'Orbitofrontal Sulci of the Human and Macaque Monkey Brain'. The Journal of Comparative Neurology 422 (1): 35–54. https://doi.org/10.1002/(SICI)1096-9861(20000619)422:1<35::AID-CNE3>3.0.CO;2-E.

Hauptman, Aaron J, David Cohen, Dirk Dhossche, Marie Raffin, Lee Wachtel, and Vladimir Ferrafiat. 2023. 'Catatonia in Neurodevelopmental Disorders: Assessing Catatonic Deterioration from Baseline'. The Lancet Psychiatry, January, S2215036622004369. https://doi.org/10.1016/S2215-0366(22)00436-9.

Patti, Marisa A., and Vanessa Troiani. 2018. 'Orbitofrontal Sulcogyral Morphology Is a Transdiagnostic Indicator of Brain Dysfunction'. NeuroImage: Clinical 17: 910–17. https://doi.org/10.1016/j.nicl.2017.12.021.

White, Tonya, Shu Su, Marcus Schmidt, Chiu-Yen Kao, and Guillermo Sapiro. 2010. 'The Development of Gyrification in Childhood and Adolescence'. Brain and Cognition 72 (1): 36–45. https://doi.org/10.1016/j.bandc.2009.10.009.